
Python Scripting
for System Administration

Rebeka Mukherjee

Department of Computer Science and Engineering
Netaji Subhash Engineering College, Kolkata

E-mail: rebekamukherjee@gmail.com

Workshop On Women In Free Software and Fedora Women’s Day
(15 July 2016)

Quick Facts

• Python is a widely used high-level, general purpose, interpreted,
dynamic programming language

• Its Implementation was started in December 1989 in CWI (Centrum
Wiskunde& Informatica) in Netherlands

• Invented by Guido van Rossum, early 90s (Feb‟91)

• It is successor of ABC Programming Language

• Python 2.0 was released in October 2000, with many new features

including a full garbage collector and Unicode. Python 3.0 was
released in December 2008.

• Open sourced from the beginning

Installing & Running Python

• Python is pre-installed on most Unix systems

• The pre-installed version may not be the most recent

one (2.7.9 and 3.4.3 as of July ’14)

• Download from http://python.org/download/

• Python comes with a large library of standard
modules

• There are several options for an IDE: IDLE, Vim,
Emacs, or your favorite text editor

http://python.org/download/
http://python.org/download/
http://python.org/download/
http://python.org/download/
http://python.org/download/

Python Basics

Hello World

• Open a terminal window and type “python”

• Python prompts with >>>

• At the prompt type ‘hello world!’

>>> print ‘hello world!’

hello world!

• To exit Python: CTRL-D

Python Philosophy

>>> import this

Python Interactive Shell

>>> a = 5

>>> b = 6

>>> a + b

11

>>> 2+3*5

17

>>> 2**8

256

>>> help (len)
Return the number of items of a sequence or collection.

Printing and Documentation

>>> print ‘this will print’

this will print

>>> #this will not print

>>>

>>> name = ‘Rebeka’
>>> print ‘Hello ’ + name + ‘!’

Hello Rebeka!

>>> a = ‘I can program in Python’

>>> len (a)

23

Variables

• Variables are not declared, just assigned

• The variable is created the first time you assign it
a value

• Variables are references to objects. The type
information is with the object, not the reference

• Everything in Python is an object

• A reference is deleted via garbage collection
after any names bound to it have passed out of
scope

Variables

>>> y

Traceback(most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name ‘y' is not defined

>>> y = 3

>>> y

3

>>> x, y = 2, ‘hello’

>>> x

2

>>> y

‘hello’

Data Types

Basic Operators

• Arithmetic operators: +, -, *, /, //, %
o + is also used for concatenation

o - is also used for set difference

o * is also used for string repetition

o // is also used for floor division

o % is also used for string formatting

• Assignment operator: =

• Comparison operator: ==

• Logical operators: and, or, not

Numbers

>>> 3+1, 3-1 # Addition, Subtraction

(4, 2)

>>> 4*3, 4/2 # Multiplication, Division

(12, 2)

>>> 5%2, 4**2 # Modulus (Remainder), Power

(1, 16)

>>> 2+4.0, 2.0**4 #Mixed type conversions
(6.0, 16.0)

Numbers

>>> (2+3j)*(4+5j) # Complex Numbers

(-7+22j)

>>> 0b0010 # Binary

2

>>> 0xff # Hexadecimal
256

>>> bin (64), oct (64), hex (64)

(‘0b1000000’, ‘0100’, ‘0x40’)

>>> 1/2

0.5

Numbers

>>> from fractions import Fraction

>>> x = Fraction (2,3)

>>> print x

2/3

>>> a = Fraction (1,3)
>>> b = Fraction (2,3)

>>> c = a-b

>>> print c

(-1/3)

>>> print Fraction (‘.25’)
1/4

String

• Immutable

• Strings are defined using quotes (‘, “ or
“““)

>>> st= “Hello World”

>>> st= ‘Hello World’

>>> st= “““This is a multi-line

string that uses triple quotes.”””

Set

>>> x=set('abcde')
>>> y=set('bdxyz')

>>> x
{'a', 'd', 'b', 'c', 'e'}
>>> y
{'x', 'd', 'b', 'z', 'y‘}
>>> x|y #Union
{'d', 'e', 'y', 'c', 'x', 'a', 'b', 'z'}
>>> x&y # Intersection
{'d', 'b'}
>>> x-y # Set Difference
{'a', 'e', 'c'}
>>> x>y, x<y #Superset, Subset

(False, False)
>>> a.add(‘hello’)
>>> x # Add member in set
{'a', 'd', 'b', 'c', 'e‘,’hello’}

List

• Mutable ordered sequence of items of mixed types

• Lists are defined using square brackets (and commas)

>>> li = [“abc”, 34, 4.34, 23]

>>> li[1]

34

>>> list2 = list1 # 2 names refer to 1 ref

 # Changing one affects both

>>> list2 = list1[:] # 2 independent copies, 2 refs

List

>>> li = [1, 11, 3, 4, 5]

>>> li.insert(2, ‘i’)

>>>li

[1, 11, ‘i’, 3, 4, 5]

>>> li.append(‘a’) # append takes a singleton as arg
>>> li

[1, 11, ‘i’, 3, 4, 5, ‘a’]

>>> li.extend([9, 8, 7]) # extend takes a list as arg

>>>li

[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]

List

>>> li = [‘a’, ‘b’, ‘c’, ‘b’]

>>> li.index(‘a’) # index of first occurrence
1
>>> li.count(‘b’) # number of occurrences
2
>>> li.remove(‘b’) # remove first occurrence
>>> li
[‘a’, ’c’, ‘b’]
>>> li.reverse() # reverse the list
>>> li
[‘b’, ‘c’, ‘a’]
>>> li.sort() # sort the list
>>> li
[‘a’, ‘b’, ‘c’]

Tuple

• A simple immutable ordered sequence of items

• Items can be of mixed types, including collection
types

• Tuples are defined using parentheses (and commas)

>>> tu = (23, “abc”, 4.56, (2,3), “def”)
>>> tu[1] # positive index (second item)

‘abc’

>>> t[-3] # negative index (third last item)

4.56
>>> t[1:4] # slicing (return copy of subset)

(‘abc’, 4.56, (2,3))

Dictionary

• Dictionaries store a mapping between a set of keys and a set
of values
– Keys can be any immutable type
– Accessed by key, not offset position
– Values can be any type
– A single dictionary can store values of different types

• You can define, modify, view, lookup, and delete the key-
value pairs in the dictionary.

>>> d={'user':'scott','pswd':12345}

>>> d['user']
'scott'

>>> d['pswd']

12345

Dictionary

>>> d['id']=45 # insert another key with value

>>> d

{'user': 'tiger', 'pswd': 12345, 'id': 45}

>>> d.keys() # keys() method

dict_keys(['user', 'pswd', 'id'])

>>> d.items() # items() method

dict_items([('user', 'tiger'), ('pswd', 12345), ('id', 45)])

>>> del(d['user']) # del() method

>>> d

{'pswd': 12345, 'id': 45}

Input

• The raw_input(string) method returns a line of
user input as a string

• The parameter is used as a prompt

• The string can be converted by using the
conversion methods int(string), float(string), etc

>>> input = raw_input(“Enter your age: ")

>>> age = int(input)

Conditional Statements

• If-elif-else:

>>> if age <= 3:
 print ‘Toddler’
 elif age <= 12:
 print ‘Kid’
 elif age <= 19:
 print ‘Teenager’
 else:
 print ‘Adult’

Conditional Statements

• switch-case:

>>> choice = ‘three’

>>> print ({‘one’: 1,

 ‘two’: 2,

 ‘three’: 3,

 ‘four’: 4}[choice])

3

Iterative Statements

• while-loops:

>>> x=1

>>> while(x<10):

 print(x)

 x=x+1

Iterative Statements

• For-loops:

>>> for i in range(20):

 if (i%3 == 0):

 print (i)

 if (i%5 == 0):
 print("Bingo!“)

 print ("---“)

• range creates a list of numbers in a specified range
• range ([start,] stop [,step])

Loop Control Statements

• break - Jumps out of the closest
enclosing loop

• continue - Jumps to the top of the closest
enclosing loop

• pass - Does nothing, empty statement
placeholder

Functions

• Can be assigned to a variable

• Can be passed as a parameter

• Can be returned from a function (return sends a result back
to the caller)

• Functions are treated like any other variable in Python

• The def statement simply assigns a function to a variable

• There is no concept of function overloading in Python (two
functions cannot have the same name, even if they have
different arguments)

Functions

>>> def max (a, b):

 if a > b:
 print a, ‘ is greater’

 elif b > a:

 print b, ‘ is greater’

 else:
 print ‘both are equal’

>>> x = 5

>>> y = 9
>>> max (x, y)

9 is greater

Functions

>>> def fact(n):
 if n < 1:
 return 1
 else:
 return n * fact(n - 1)

>>> x = 5
>>> y = fact (x)
>>> print y
120

Modules

• Python’s extensive library contains built-in modules that may be
used to simplify and reduce development time.

• Python has a way to put definitions in a file and use them in a
script or in an interactive instance of the interpreter. Such a file is
called a module.

• Definitions from a module can be imported into other modules.

• A module can contain executable statements as well as function
definitions. These statements are intended to initialize the
module. They are executed only the first time the module name is
encountered in an import statement.

• Eg. import pwd, sys, os, csv, subprocess

Packages

• Collection of modules in directory

• Must have __init__.py file

• May contain subpackages

>>> import dir1.dir2.mod
>>> from dir1.dir2.mod import x

Class

>>> class Stack:
 def __init__(self): #constructor
 self.items = []

 def push(self, x):
 self.items.append(x)

 def pop(self):
 x = self.items[-1]
 del self.items[-1]
 return x

 def empty(self):
 return len(self.items) == 0

Exception

• An event occurs during the execution of program

• Disrupts normal flow of program’s instruction
• It must be handled

>>> def tem_convert(var):

 try:
 x=1/var

 return(x)

 except ZeroDivisionError:

 print("argument dont match")
 return

System Administration

Why Python?

• Python is easy to learn

• Allows you to do fairly complex tasks

• Express complex ideas with simple language constructs

• Readability

• Simple support for Object Oriented Programming (OOP)

• Python Standard Library

• Easy access to numerous third-party packages

Example 1

Search for files and show permissions

Steps:

1. Get the search pattern from the user.

2. Perform the search.

3. Print a listing of files found.

4. Using the stat module, get permissions for
each file found.

5. Present the results to the user.

Python Code

import stat, sys, os, string, commands

#Getting search pattern from user and assigning it to a list

try:

 #run a 'find' command and assign results to a variable

 pattern = raw_input("Enter the file pattern to search for:\n")

 commandString = "find " + pattern
 commandOutput = commands.getoutput(commandString)

 findResults = string.split(commandOutput, "\n")

 #output find results, along with permissions

 print "Files:"

 print commandOutput

 print "================================"

Python Code (contd.)

for file in findResults:

 mode=stat.S_IMODE(os.lstat(file)[stat.ST_MODE])
 print "\nPermissions for file ", file, ":“

 for level in "USR", "GRP", "OTH":

 for perm in "R", "W", "X":

 if mode & getattr(stat,"S_I"+perm+level):
 print level, " has ", perm, " permission"

 else:

 print level, " does NOT have ", perm, "
permission"

except:

 print "There was a problem - check the message
above"

Example 2

Menu driven operations on a tar archive

Steps:

1. Open the tar file.

2. Present the menu and get the user selection.

3. If you press 1, the program prompts you for the file
name in the archive to extract the current directory
to and then extracts the file.

4. If you press 2, the program prompts you for the file
name and then displays the file information.

5. If you press 3, the program lists all the files in the
archive.

Python Code

import tarfile, sys

try:

 #open tarfile

 tar = tarfile.open(sys.argv[1], "r:tar")

 #present menu and get selection

 selection = raw_input("Enter\n\

 1 to extract a file\n\

 2 to display information on a file in the archive\n\
 3 to list all the files in the archive\n\n")

Python Code (contd.)

#perform actions based on selection above

 if selection == "1":

 filename = raw_input("enter the
filename to extract: ")

 tar.extract(filename)

 elif selection == "2":

 filename = raw_input("enter the
filename to inspect: ")

Python Code (contd.)

for tarinfo in tar:
 if tarinfo.name == filename:
 print "\n\
 Filename:\t\t", tarinfo.name, "\n\
 Size:\t\t", tarinfo.size, "bytes\n\
 elif selection == "3":
 print tar.list(verbose=True)
except:
 print "There was a problem running the

program"

Example 3

Check for a running process and show
information

Steps:
1. Get the name of a process to check and

assign it to a variable.
2. Run the ps command and assign the results

to a list.
3. Display detailed information about the

process with English terms.

Python Code

import commands, os, string

program = raw_input("Enter the name of the

program to check: ")

try:
 #perform a ps command and assign results to a

list
 output = commands.getoutput("ps -f|grep " +

program)
 proginfo = string.split(output)

Python Code (contd.)

 #display results
 print "\n\
 Full path:\t\t", proginfo[5], "\n\
 Owner:\t\t\t", proginfo[0], "\n\
 Process ID:\t\t", proginfo[1], "\n\
 Parent process ID:\t", proginfo[2], "\n\
 Time started:\t\t", proginfo[4]
except:
 print "There was a problem with the

program."

Other Uses of Scripts

• Managing servers: Checks patch levels for a
particular application across a set of servers and
updates them automatically.

• Logging: Sends an e-mail automatically if a particular
type of error shows up in the syslog.

• Networking: Makes a Telnet connection to a server

and monitors the status of the connection.

• Testing Web applications: Uses freely available
tools to emulate a Web browser and verifies Web
application functionality and performance.

Thank You

